Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Viruses ; 15(5)2023 05 13.
Article in English | MEDLINE | ID: covidwho-20235239

ABSTRACT

Acute SARS-CoV-2 infection has been associated with false-positive HIV screening tests. The underlying mechanism is unclear, and for clinical cases, evidence beyond a temporal connection is missing. However, several experimental studies point toward SARS-CoV-2 spike/HIV-1 envelope (Env) cross-reactive antibodies (Abs) as a cause. Here, we present the first case of an individual with convalescent SARS-CoV-2 infection testing false positive in both an HIV screening and confirmatory test. Longitudinal sampling showed that the phenomenon was temporary but lasted for at least 3 months before waning. After excluding a multitude of common determinants for assay interference, we further show by antibody depletion studies that SARS-CoV-2-spike-specific Abs did not cross-react with HIV-1 gp120 in the patient sample. No additional case of HIV test interference was identified in a cohort of 66 individuals who presented to a post-COVID-19 outpatient clinic. We conclude the SARS-CoV-2-associated HIV test interference to be a temporary process capable of disturbing both screening and confirmatory assays. The assay interference is short-lived and/or rare but should be considered by physicians as a possible explanation for unexpected HIV diagnostic results in patients with a recent SARS-CoV-2 infection.


Subject(s)
COVID-19 , HIV Infections , Humans , COVID-19/diagnosis , SARS-CoV-2 , Antibodies, Viral , HIV Infections/complications , HIV Infections/diagnosis , Diagnostic Tests, Routine , Spike Glycoprotein, Coronavirus , COVID-19 Testing
2.
Vaccines (Basel) ; 11(3)2023 Feb 22.
Article in English | MEDLINE | ID: covidwho-2288745

ABSTRACT

The SARS-CoV-2 pandemic remains an ongoing threat to global health with emerging variants, especially the Omicron variant and its sub-lineages. Although large-scale vaccination worldwide has delivered outstanding achievements for COVID-19 prevention, a declining effectiveness to a different extent in emerging SARS-CoV-2 variants was observed in the vaccinated population. Vaccines eliciting broader spectrum neutralizing antibodies and cellular immune responses are urgently needed and important. To achieve this goal, rational vaccine design, including antigen modeling, screening and combination, vaccine pipelines, and delivery, are keys to developing a next-generation COVID-19 vaccine. In this study, we designed several DNA constructs based on codon-optimized spike coding regions of several SARS-CoV-2 variants and analyzed their cross-reactive antibodies, including neutralizing antibodies, and cellular immune responses against several VOCs in C57BL/6 mice. The results revealed that different SARS-CoV-2 VOCs induced different cross-reactivity; pBeta, a DNA vaccine encoding the spike protein of the Beta variant, elicited broader cross-reactive neutralizing antibodies against other variants including the Omicron variants BA.1 and BA.4/5. This result demonstrates that the spike antigen from the Beta variant potentially serves as one of the antigens for multivalent vaccine design and development against variants of SARS-CoV-2.

3.
J Biomol Struct Dyn ; : 1-14, 2022 Jan 31.
Article in English | MEDLINE | ID: covidwho-2279351

ABSTRACT

Cross-reactive and broadly neutralizing antibodies against surface proteins of diverse strains of rapidly evolving viral pathogens like SARS-CoV-2 can prevent infection and therefore are crucial for the development of effective universal vaccines. While antibodies typically incorporate mutations in their complementarity determining regions during affinity maturation, mutations in the framework regions have been reported as players in determining properties of broadly neutralizing antibodies against HIV and the Influenza virus. We propose an increase in the cross-reactive potential of CR3022 against the emerging SARS- CoV-2 variants of concern through enhanced conformational flexibility. In this study, we use molecular dynamics simulations, in silico mutagenesis, structural modeling, and docking to explore the role of light chain FWR mutations in CR3022, a SARS-CoV anti-spike (S)-protein antibody cross-reactive to the S-protein receptor binding domain of SARS-CoV-2. Our study shows that single substitutions in the light chain framework region of CR3022 with conserved epitopes across SARS-CoV strains allow targeting of diverse antibody epitope footprints that align with the epitopes of recently-categorized neutralizing antibody classes while enabling binding to more than one strain of SARS-CoV-2. Our study has implications for rapid and evolution-based engineering of broadly neutralizing antibodies and reaffirms the role of framework mutations in effective change of antibody orientation and conformation via improved flexibility.Communicated by Ramaswamy H. Sarma.

4.
Viruses ; 15(3)2023 02 24.
Article in English | MEDLINE | ID: covidwho-2253910

ABSTRACT

OBJECTIVE: T-cell responses against SARS-CoV-2 are observed in unexposed individuals, attributed to previous common human coronavirus (HCoV) infections. We evaluated the evolution of this T-cell cross-reactive response and the specific memory B-cells (MBCs) after the SARS-CoV-2 mRNA-based vaccination and its impact on incident SARS-CoV-2 infections. METHODS: This was a longitudinal study of 149 healthcare workers (HCWs) that included 85 unexposed individuals that were subdivided according to previous T-cell cross-reactivity, who were compared to 64 convalescent HCWs. Changes in specific T-cell response and memory B-cell (MBC) levels were compared at baseline and after two doses of the SARS-CoV-2 mRNA-based vaccine. RESULTS: A cross-reactive T-cell response was found in 59% of unexposed individuals before vaccination. Antibodies against HKU1 positively correlated with OC43 and 229E antibodies. Spike-specific MBCs was scarce in unexposed HCWs regardless of the presence of baseline T-cell cross-reactivity. After vaccination, 92% and 96% of unexposed HCWs with cross-reactive T-cells had CD4+ and CD8+ T-cell responses to the spike protein, respectively. Similar results to that were found in convalescents (83% and 92%, respectively). Contrarily, higher than that which was observed in unexposed individuals without T-cell cross-reactivity showed lower CD4+ and CD8+ T-cell responses (73% in both cases, p = 0.03). Nevertheless, previous cross-reactive T-cell response was not associated with higher levels of MBCs after vaccination in unexposed HCWs. During a follow-up of 434 days (IQR, 339-495) after vaccination, 49 HCWs (33%) became infected, with a significant positive correlation between spike-specific MBC levels and isotypes IgG+ and IgA+ after vaccination and a longer time to get infected. Interestingly, T-cell cross-reactivity did not reduce the time to vaccine breakthrough infections. CONCLUSION: While pre-existing T-cell cross-reactivity enhances the T-cell response after vaccination, it does not increase SARS-CoV-2-specific MBC levels in the absence of previous infection. Overall, the level of specific MBCs determines the time to breakthrough infections, regardless of the presence of T-cell cross-reactivity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Longitudinal Studies , COVID-19/prevention & control , Antibodies , Breakthrough Infections , RNA, Messenger , Vaccination , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
5.
Microorganisms ; 11(2)2023 Feb 13.
Article in English | MEDLINE | ID: covidwho-2243948

ABSTRACT

Severe cases of COVID-19 continue to put pressure on medical operations by prolonging hospitalization, occupying intensive care beds, and forcing medical personnel to undergo harsh labor. The eradication of SARS-CoV-2 through vaccine development has yet to be achieved, mainly due to the appearance of multiple mutant-incorporating strains. The present study explored the utility of human intravenous immunoglobulin (IVIG) preparations in suppressing the aggravation of any COVID-19 infection using a SARS-CoV-2 pseudovirus assay. Our study revealed the existence of IgG antibodies in human IVIG preparations, which recognized the spike protein of SARS-CoV-2. Remarkably, the pretreatment of ACE2/TMPRSS2-expressing host cells (HEK293T cells) with IVIG preparations (10 mg/mL) inhibited approximately 40% entry of SARS-CoV-2 pseudovirus even at extremely low concentrations of IgG (0.16-1.25 mg/mL). In contrast, the antibody-dependent enhancement of viral entry was confirmed when SARS-CoV-2 pseudovirus was treated with some products at an IgG concentration of 10 mg/mL. Our data suggest that IVIG may contribute to therapy for COVID-19, including for cases caused by SARS-CoV-2 variants, since IVIG binds not only to the spike proteins of the virus, but also to human ACE2/TMPRSS2. An even better preventive effect can be expected with blood collected after the start of the COVID-19 pandemic.

6.
J Virol ; 97(3): e0166422, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2238656

ABSTRACT

Seasonal coronaviruses have been circulating widely in the human population for many years. With increasing age, humans are more likely to have been exposed to these viruses and to have developed immunity against them. It has been hypothesized that this immunity to seasonal coronaviruses may provide partial protection against infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and it has also been shown that coronavirus disease 2019 (COVID-19) vaccination induces a back-boosting effects against the spike proteins of seasonal betacoronaviruses. In this study, we tested if immunity to the seasonal coronavirus spikes from OC43, HKU1, 229E, or NL63 would confer protection against SARS-CoV-2 challenge in a mouse model, and whether pre-existing immunity against these spikes would weaken the protection afforded by mRNA COVID-19 vaccination. We found that mice vaccinated with the seasonal coronavirus spike proteins had no increased protection compared to the negative controls. While a negligible back-boosting effect against betacoronavirus spike proteins was observed after SARS-CoV-2 infection, there was no negative original antigenic sin-like effect on the immune response and protection induced by SARS-CoV-2 mRNA vaccination in animals with pre-existing immunity to seasonal coronavirus spike proteins. IMPORTANCE The impact that immunity against seasonal coronaviruses has on both susceptibility to SARS-CoV-2 infection as well as on COVID-19 vaccination is unclear. This study provides insights into both questions in a mouse model of SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , Coronavirus Infections , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Humans , Mice , COVID-19/immunology , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Seasons , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cross Protection/immunology
7.
Viral Immunol ; 36(3): 222-228, 2023 04.
Article in English | MEDLINE | ID: covidwho-2232672

ABSTRACT

Since the beginning of the pandemic, the pre-existing immunity against SARS-CoV-2 has been postulated as one possible cause of asymptomatic infections. Later, various works reported that pre-existing immune response against the two structural conserved antigens: S2 subunit and the nucleocapsid protein, were associated to some level of asymptomatic profile in infected individuals. To explore the Ab background against these two antigens, in the context of vaccine-elicited and hybrid (natural infection plus vaccination induced) immunity of SARS-CoV-2, in this work, we tested sera from inactivated vaccine-immunized donors and from vaccinated and subsequent natural infected donors upon the Omicron variant wave in Guangdong province, China. Serum samples were collected from 27 COVID-19 convalescent, 25 SARS-CoV-2 vaccinated, and 10 negative donors. The IgG cross-reactivity response against these two antigens from another relevant human coronavirus (HCoV) was also evaluated. The findings indicate that IgG response against S2 and N protein was particularly higher in sera with hybrid immunity. The cross-reactive Abs were more significant against SARS-CoV-1, while a wide cross-reactivity was detected for N antigen for one human Alpha coronavirus HCoV-229E even in the negative control samples. The presence of cross-reactive Abs against the two conserved antigens N and S2, particularly in the context of hybrid immunity, could pave the way for future boosted vaccines carrying these conserved regions.


Subject(s)
Blood Group Antigens , COVID-19 , Humans , SARS-CoV-2 , COVID-19/prevention & control , Immunoglobulin G , Spike Glycoprotein, Coronavirus , Antibodies, Viral
8.
Front Immunol ; 13: 1049458, 2022.
Article in English | MEDLINE | ID: covidwho-2236273

ABSTRACT

Introduction: A key feature of the COVID-19 pandemic has been the emergence of SARS-CoV-2 variants with different transmission characteristics. However, when a novel variant arrives in a host population, it will not necessarily lead to many cases. Instead, it may fade out, due to stochastic effects and the level of immunity in the population. Immunity against novel SARS-CoV-2 variants may be influenced by prior exposures to related viruses, such as other SARS-CoV-2 variants and seasonal coronaviruses, and the level of cross-reactive immunity conferred by those exposures. Methods: Here, we investigate the impact of cross-reactive immunity on the emergence of SARS-CoV-2 variants in a simplified scenario in which a novel SARS-CoV-2 variant is introduced after an antigenically related virus has spread in the population. We use mathematical modelling to explore the risk that the novel variant invades the population and causes a large number of cases, as opposed to fading out with few cases. Results: We find that, if cross-reactive immunity is complete (i.e. someone infected by the previously circulating virus is not susceptible to the novel variant), the novel variant must be more transmissible than the previous virus to invade the population. However, in a more realistic scenario in which cross-reactive immunity is partial, we show that it is possible for novel variants to invade, even if they are less transmissible than previously circulating viruses. This is because partial cross-reactive immunity effectively increases the pool of susceptible hosts that are available to the novel variant compared to complete cross-reactive immunity. Furthermore, if previous infection with the antigenically related virus assists the establishment of infection with the novel variant, as has been proposed following some experimental studies, then even variants with very limited transmissibility are able to invade the host population. Discussion: Our results highlight that fast assessment of the level of cross-reactive immunity conferred by related viruses against novel SARS-CoV-2 variants is an essential component of novel variant risk assessments.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics , Cross Reactions
9.
Cell Rep Med ; 4(2): 100918, 2023 02 21.
Article in English | MEDLINE | ID: covidwho-2184477

ABSTRACT

With the widespread vaccinations against coronavirus disease 2019 (COVID-19), we are witnessing gradually waning neutralizing antibodies and increasing cases of breakthrough infections, necessitating the development of drugs aside from vaccines, particularly ones that can be administered outside of hospitals. Here, we present two cross-reactive nanobodies (R14 and S43) and their multivalent derivatives, including decameric ones (fused to the immunoglobulin M [IgM] Fc) that maintain potent neutralizing activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after aerosolization and display not only pan-SARS-CoV-2 but also varied pan-sarbecovirus activities. Through respiratory administration to mice, monovalent and decameric R14 significantly reduce the lung viral RNAs at low dose and display potent pre- and post-exposure protection. Furthermore, structural studies reveal the neutralizing mechanisms of R14 and S43 and the multiple inhibition effects that the multivalent derivatives exert. Our work demonstrates promising convenient drug candidates via respiratory administration against SARS-CoV-2 infection, which can contribute to containing the COVID-19 pandemic.


Subject(s)
COVID-19 , Single-Domain Antibodies , Animals , Mice , Humans , SARS-CoV-2 , Pandemics , Antibodies, Neutralizing , Immunoglobulin Fc Fragments
10.
Front Immunol ; 13: 1004656, 2022.
Article in English | MEDLINE | ID: covidwho-2142023

ABSTRACT

Circulating, blood-borne SARS-CoV-2-reactive memory T cells in persons so far unexposed to SARS-CoV-2 or the vaccines have been described in 20-100% of the adult population. They are credited with determining the efficacy of the immune response in COVID-19. Here, we demonstrate the presence of preexisting memory CD4+ T cells reacting to peptides of the spike, membrane, or nucleocapsid proteins of SARS-CoV-2 in the bone marrow of all 17 persons investigated that had previously not been exposed to SARS-CoV-2 or one of the vaccines targeting it, with only 15 of these persons also having such cells detectable circulating in the blood. The preexisting SARS-CoV-2-reactive memory CD4+ T cells of the bone marrow are abundant and polyfunctional, with the phenotype of central memory T cells. They are tissue-resident, at least in those persons who do not have such cells in the blood, and about 30% of them express CD69. Bone marrow resident SARS-CoV-2-reactive memory CD4+ memory T cells are also abundant in vaccinated persons analyzed 10-168 days after 1°-4° vaccination. Apart from securing the bone marrow, preexisting cross-reactive memory CD4+ T cells may play an important role in shaping the systemic immune response to SARS-CoV-2 and the vaccines, and contribute essentially to the rapid establishment of long-lasting immunity provided by memory plasma cells, already upon primary infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Bone Marrow , CD4-Positive T-Lymphocytes , Nucleocapsid Proteins
11.
Inflamm Regen ; 42(1): 51, 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2139784

ABSTRACT

As an important part of adaptive immunity, T cells are indispensable in the defense against pathogens including viruses. SARS-CoV-2 is a new human coronavirus that occurred at the end of 2019 and has caused the COVID-19 pandemic. Nevertheless, most of the infected patients recovered without any antiviral therapies, suggesting an effective immunity developed in the bodies. T cell immunity responds upon SARS-CoV-2 infection or vaccination and plays crucial roles in eliminating the viruses and generating T cell memory. Specifically, a subpopulation of CD4+ T cells could support the production of anti-SARS-CoV-2 antibodies, and cytotoxic CD8+ T cells are also protective against the infection. SARS-CoV-2-recognizing T cells could be detected in SARS-CoV-2-unexposed donors, but the role of these cross-reactive T cells is still in debate. T cell responses could be diverse across individuals, mainly due to the polymorphism of HLAs. Thus, compared to antibodies, T cell responses are generally less affected by the mutations of SARS-CoV-2 variants. Up to now, a huge number of studies on SARS-CoV-2-responsive T cells have been published. In this review, we introduced some major findings addressing the questions in the main aspects about T cell responses elicited by SARS-CoV-2, to summarize the current understanding of COVID-19.

12.
Cell Rep Med ; : 100834, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2120103

ABSTRACT

The emergence of the antigenically distinct and highly transmissible Omicron variant highlights the possibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune escape due to viral evolution. This continued evolution, along with the possible introduction of new sarbecoviruses from zoonotic reservoirs, may evade host immunity elicited by current SARS-CoV-2 vaccines. Identifying cross-reactive antibodies and defining their epitope(s) can provide templates for rational immunogen design strategies for next-generation vaccines. Here, we characterize the receptor-binding-domain-directed, cross-reactive humoral repertoire across 10 human vaccinated donors. We identify cross-reactive antibodies from diverse gene rearrangements targeting two conserved receptor-binding domain epitopes. An engineered immunogen enriches antibody responses to one of these conserved epitopes in mice with pre-existing SARS-CoV-2 immunity; elicited responses neutralize SARS-CoV-2, variants, and related sarbecoviruses. These data show how immune focusing to a conserved epitope targeted by human cross-reactive antibodies may guide pan-sarbecovirus vaccine development, providing a template for identifying such epitopes and translating to immunogen design.

13.
Front Immunol ; 13: 1042406, 2022.
Article in English | MEDLINE | ID: covidwho-2099154

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes asymptomatic or mild symptoms, even rare hospitalization in children. A major concern is whether the pre-existing antibodies induced by low pathogenic human coronaviruses (LPH-CoVs) in children can cross-react with SARS-CoV-2. To address this unresolved question, we analyzed the pre-existing spike (S)-specific immunoglobin (Ig) G antibodies against LPH-CoVs and the cross-reactive antibodies against SARS-CoV-2 in 658 serum samples collected from children prior to SARS-CoV-2 outbreak. We found that the seroprevalence of these four LPH-CoVs reached 75.84%, and about 24.64% of the seropositive samples had cross-reactive IgG antibodies against the nucleocapsid, S, and receptor binding domain antigens of SARS-CoV-2. Additionally, the re-infections with different LPH-CoVs occurred frequently in children and tended to increase the cross-reactive antibodies against SARS-CoV-2. From the forty-nine serum samples with cross-reactive anti-S IgG antibodies against SARS-CoV-2, we found that seven samples with a median age of 1.4 years old had detected neutralizing activity for the wild-type or mutant SARS-CoV-2 S pseudotypes. Interestingly, all of the seven samples contained anti-S IgG antibodies against HCoV-OC43. Together, these data suggest that children's pre-existing antibodies to LPH-CoVs have limited cross-reactive neutralizing antibodies against SRAS-CoV-2.


Subject(s)
COVID-19 , Coronaviridae , Child , Humans , Infant , SARS-CoV-2 , Immunity, Humoral , Seroepidemiologic Studies , Antibodies, Viral , Immunoglobulin G
14.
Front Immunol ; 13: 977064, 2022.
Article in English | MEDLINE | ID: covidwho-2099147

ABSTRACT

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged continuously, challenging the effectiveness of vaccines, diagnostics, and treatments. Moreover, the possibility of the appearance of a new betacoronavirus with high transmissibility and high fatality is reason for concern. In this study, we used a natively paired yeast display technology, combined with next-generation sequencing (NGS) and massive bioinformatic analysis to perform a comprehensive study of subdomain specificity of natural human antibodies from two convalescent donors. Using this screening technology, we mapped the cross-reactive responses of antibodies generated by the two donors against SARS-CoV-2 variants and other betacoronaviruses. We tested the neutralization potency of a set of the cross-reactive antibodies generated in this study and observed that most of the antibodies produced by these patients were non-neutralizing. We performed a comparison of the specific and non-specific antibodies by somatic hypermutation in a repertoire-scale for the two individuals and observed that the degree of somatic hypermutation was unique for each patient. The data from this study provide functional insights into cross-reactive antibodies that can assist in the development of strategies against emerging SARS-CoV-2 variants and divergent betacoronaviruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Membrane Glycoproteins , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
15.
Immunol Rev ; 310(1): 61-75, 2022 09.
Article in English | MEDLINE | ID: covidwho-2097773

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), has shifted our paradigms about B cell immunity and the goals of vaccination for respiratory viruses. The development of population immunity, through responses directed to highly immunogenic regions of this virus, has been a strong driving force in the emergence of progressively mutated variants. This review highlights how the strength of the existing global virology and immunology networks built for HIV vaccine research enabled rapid adaptation of techniques, assays, and skill sets, to expeditiously respond to the SARS-CoV-2 pandemic. Allying real-time genomic surveillance to immunological platforms enabled the characterization of immune responses elicited by infection with distinct variants, in sequential epidemic waves, as well as studies of vaccination and hybrid immunity (combination of infection- and vaccination-induced immunity). These studies have shown that consecutive variants of concern have steadily diminished the ability of vaccines to prevent infection, but that increasing levels of hybrid immunity result in higher frequencies of cross-reactive responses. Ultimately, this rapid pivot from HIV to SARS-CoV-2 enabled a depth of understanding of the SARS-CoV-2 antigenic vulnerabilities as population immunity expanded and diversified, providing key insights for future responses to the SARS-CoV-2 pandemic.


Subject(s)
COVID-19 , HIV Infections , Viral Vaccines , Antibodies, Viral , Humans , SARS-CoV-2 , South Africa , Vaccination
16.
Nano Today ; 47: 101669, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2095846

ABSTRACT

Global public health infrastructure is unprepared for emerging pathogen epidemics, in part because diagnostic tests are not developed in advance. The recent Zika, Ebola, and SARS-CoV-2 virus epidemics are cases in point. We demonstrate here that multicolored gold nanoparticles, when coupled to cross-reactive monoclonal antibody pairs generated from a single immunization regimen, can be used to create multiple diagnostics that specifically detect and distinguish related viruses. The multiplex approach for specific detection centers on immunochromatography with pairs of antibody-conjugated red and blue gold nanoparticles, coupled with clustering algorithms to detect and distinguish related pathogens. Cross-reactive antibodies were used to develop rapid tests for i) Dengue virus serotypes 1-4, ii) Zika virus, iii) Ebola and Marburg viruses, and iv) SARS-CoV and SARS-CoV-2 viruses. Multiplexed rapid antigen tests based on multicolored nanoparticles and cross-reactive antibodies and can be developed prospectively at low cost to improve preparedness for epidemic outbreaks.

17.
Viruses ; 14(11)2022 Oct 24.
Article in English | MEDLINE | ID: covidwho-2081985

ABSTRACT

Reports on T-cell cross-reactivity against SARS-CoV-2 epitopes in unexposed individuals have been linked with prior exposure to the human common cold coronaviruses (HCCCs). Several studies suggested that cross-reactive T-cells response to live attenuated vaccines (LAVs) such as BCG (Bacillus Calmette-Guérin), OPV (Oral Polio Vaccine), and MMR (measles, mumps, and rubella) can limit the development and severity of COVID-19. This study aims to identify potential cross-reactivity between SARS-CoV-2, HCCCs, and LAVs in the context of T-cell epitopes peptides presented by HLA (Human Leukocyte Antigen) alleles of the Indonesian population. SARS-CoV-2 derived T-cell epitopes were predicted using immunoinformatics tools and assessed for their conservancy, variability, and population coverage. Two fully conserved epitopes with 100% similarity and nine heterologous epitopes with identical T-cell receptor (TCR) contact residues were identified from the ORF1ab fragment of SARS-CoV-2 and all HCCCs. Cross-reactive epitopes from various proteins of SARS-CoV-2 and LAVs were also identified (15 epitopes from BCG, 7 epitopes from MMR, but none from OPV). A majority of the identified epitopes were observed to belong to ORF1ab, further suggesting the vital role of ORF1ab in the coronaviruses family and suggesting it as a candidate for a potential universal coronavirus vaccine that protects against severe disease by inducing cell mediated immunity.


Subject(s)
COVID-19 , Common Cold , Middle East Respiratory Syndrome Coronavirus , Viral Vaccines , Humans , SARS-CoV-2/genetics , Epitopes, T-Lymphocyte , Middle East Respiratory Syndrome Coronavirus/genetics , Vaccines, Attenuated , COVID-19 Vaccines , COVID-19/prevention & control , Alleles , BCG Vaccine , Indonesia/epidemiology , Spike Glycoprotein, Coronavirus/genetics
18.
Int J Mol Sci ; 23(19)2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2066128

ABSTRACT

COVID-19 patients often develop coagulopathies including microclotting, thrombotic strokes or thrombocytopenia. Autoantibodies are present against blood-related proteins including cardiolipin (CL), serum albumin (SA), platelet factor 4 (PF4), beta 2 glycoprotein 1 (ß2GPI), phosphodiesterases (PDE), and coagulation factors such as Factor II, IX, X and von Willebrand factor (vWF). Different combinations of autoantibodies associate with different coagulopathies. Previous research revealed similarities between proteins with blood clotting functions and SARS-CoV-2 proteins, adenovirus, and bacterial proteins associated with moderate-to-severe COVID-19 infections. This study investigated whether polyclonal antibodies (mainly goat and rabbit) against these viruses and bacteria recognize human blood-related proteins. Antibodies against SARS-CoV-2 and adenovirus recognized vWF, PDE and PF4 and SARS-CoV-2 antibodies also recognized additional antigens. Most bacterial antibodies tested (group A streptococci [GAS], staphylococci, Escherichia coli [E. coli], Klebsiella pneumoniae, Clostridia, and Mycobacterium tuberculosis) cross-reacted with CL and PF4. while GAS antibodies also bound to F2, Factor VIII, Factor IX, and vWF, and E. coli antibodies to PDE. All cross-reactive interactions involved antibody-antigen binding constants smaller than 100 nM. Since most COVID-19 coagulopathy patients display autoantibodies against vWF, PDE and PF4 along with CL, combinations of viral and bacterial infections appear to be necessary to initiate their autoimmune coagulopathies.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Adenoviridae , Animals , Antibodies, Bacterial , Antigens, Bacterial , Autoantibodies , Bacterial Proteins , Blood Coagulation Factors , Capsid Proteins , Cardiolipins , Escherichia coli/metabolism , Factor IX , Factor VIII , Humans , Phosphoric Diester Hydrolases , Platelet Factor 4/metabolism , Prothrombin , Rabbits , SARS-CoV-2 , Serum Albumin , beta 2-Glycoprotein I , von Willebrand Factor
19.
Gut Microbes ; 14(1): 2117503, 2022.
Article in English | MEDLINE | ID: covidwho-2028942

ABSTRACT

The origins of preexisting SARS-CoV-2 cross-reactive antibodies and their potential impacts on vaccine efficacy have not been fully clarified. In this study, we demonstrated that S2 was the prevailing target of the preexisting S protein cross-reactive antibodies in both healthy human and SPF mice. A dominant antibody epitope was identified on the connector domain of S2 (1147-SFKEELDKYFKNHT-1160, P144), which could be recognized by preexisting antibodies in both human and mouse. Through metagenomic sequencing and fecal bacteria transplant, we demonstrated that the generation of S2 cross-reactive antibodies was associated with commensal gut bacteria. Furthermore, six P144 reactive monoclonal antibodies were isolated from naïve SPF mice and were proven to cross-react with commensal gut bacteria collected from both human and mouse. A variety of cross-reactive microbial proteins were identified using LC-MS, of which E. coli derived HSP60 and HSP70 proteins were confirmed to be able to bind to one of the isolated monoclonal antibodies. Mice with high levels of preexisting S2 cross-reactive antibodies mounted higher S protein specific binding antibodies, especially against S2, after being immunized with a SARS-CoV-2 S DNA vaccine. Similarly, we found that levels of preexisting S2 and P144-specific antibodies correlated positively with RBD binding antibody titers after two doses of inactivated SARS-CoV-2 vaccination in human. Collectively, our study revealed an alternative origin of preexisting S2-targeted antibodies and disclosed a previously neglected aspect of the impact of gut microbiota on host anti-SARS-CoV-2 immunity.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Viral Vaccines , Animals , Antibodies, Monoclonal , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Escherichia coli , Humans , Mice , SARS-CoV-2
20.
Clin Infect Dis ; 75(Supplement_1): S24-S29, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1992141

ABSTRACT

Since the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic began 2 years ago, the scientific community has swiftly worked to understand the transmission, pathogenesis, and immune response of this virus to implement public health policies and ultimately project an end to the pandemic. In this perspective, we present our work identifying SARS-CoV-2 epitopes to quantify T-cell responses and review how T cells may help protect against severe disease. We examine our prior studies which demonstrate durable humoral and cell-mediated memory in natural infection and vaccination. We discuss how SARS-CoV-2-specific T cells from either natural infection or vaccination can recognize emerging variants of concern, suggesting that the currently approved vaccines may be sufficient. We also discuss how pre-existing cross-reactive T cells promote rapid development of immune memory to SARS-CoV-2. We finally posit how identifying SARS-CoV-2 epitopes can help us develop a pan-coronavirus vaccine to prepare for future pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Adaptive Immunity , COVID-19 Vaccines , Epitopes , Humans
SELECTION OF CITATIONS
SEARCH DETAIL